Трудно себе представить садоводство наших дней, которое проводилось бы без использования теплиц и парников. Температурный режим в теплице дает возможность круглый год иметь в холодильнике набор из любимых овощей и фруктов и даже наслаждаться видом цветов в самой середине зимы.
Восьмиканальная схема терморегуляции теплицы.
История изобретения парника и теплицы относится к XIX веку, когда их и начали использовать. Это были ямы, покрываемые рамами. Теплом такие парники обеспечивал разлагающийся навоз. Такая конструкция хоть и была примитивной, но все же помогала уже тогда выращивать овощи круглый год.
В современном дачном участке теплица – это один из самых важных элементов. Немалая часть садоводов приезжает по выходным со своих городов, где в основном проживают, потому для таких людей каждодневное ухаживание за теплицей является делом затруднительным.
Если попытаться обойтись без теплицы, садовод потеряет много преимуществ. Вот, к примеру, зелень, посаженную в парнике или теплице ранней весной, можно подать к столу уже в мае. Если будете выращивать свои продукты в теплице, вы сможете получать урожай гораздо раньше, да и к тому же ваши продукты будут как минимум такими же вкусными, как выращенные традиционным способом.
При планировании покупки теплицы необходимо хорошенько подумать, чтобы ваша теплица не оказалась слишком дорогой в содержании. Любой садовод захочет иметь качественную и долговечную теплицу. Одним из самых главных критериев есть прочность, ведь эта конструкция обязана выдерживать сильные ветровые и снеговые нагрузки.
Схема устройства терморегулирования теплицы.
Алюминиевые теплицы являются самыми прочными и самыми долговечными (25 лет), но и цена кусается, что является немалым минусом. Теплицы из дерева смогут прослужить не так много времени (10 лет). Теплицы из пластика самые ненадежные и недолговечные. Среди садоводов более популярны теплицы из оцинкованного профиля: они имеют адекватную стоимость и, кроме того, достаточно долговечны. Для покрытия теплицы чаще всего рекомендуют поликарбонат или пленочные материалы. Сотовый поликарбонат – это сворачивающиеся в рулон упругие панели с воздушными полостями.
Достоинством материала является эффективное управление теплом: он защищает растения от перегрева в жару и не дает теплу покидать теплицу в холод. Также этот материал выдерживает действие химикатов и преграждает путь ультрафиолетовому излучению, которое может навредить растениям. К тому же сам процесс установки не является сложным и вы сами сможете его осуществить.
Можно сделать вывод, что поликарбонатные теплицы – выбор достаточно надежный в плане устойчивости и управления циркуляцией тепла и более выгодный в финансовом плане. Благодаря способности выдерживать ветер, сильный мороз и другие вредные воздействия, теплица из такого материала прослужит вам очень долго. К тому же этот материал не утрачивает прозрачности с течением времени.
Регулятор температуры в теплицах
Уровень температуры в теплицах обязан зависеть от освещенности (ночью температура должна быть ниже, а днем – выше). Регулятор температуры, который работает от двух датчиков (температура и освещенность), подходит по всем пунктам требований тепличного регулятора температуры.
Регулятор имеет две основные части:
- Блок коррекции температуры согласно уровню освещенности (транзисторы VT2, VT4);
- Собранный на транзисторах VT6, VT8, VT10 блок-регулятор температуры.
Регулятор температуры: принципиальная схема
Электрическая схема блока регулятора температуры.
Согласующее устройство, выполненное на транзисторе VT5, связывает данные блоки. То значение температуры, которое вы установили, сместится, как только изменятся условия освещенности, в зависимости от положения переключателя S1. Своими не показанными на схеме контактами, выходное реле К1 управляет работой нагревательного устройства. Кроме того, оно является нагрузкой усилителя мощности VT10.
Датчики представлены терморезистором R14 и фоторезистором R1 и настроены на соответствующую реакцию в случае изменения температуры и освещенности. Парамы, которые поддерживает комбинированный регулятор, совершают установку по освещенности переменным резистором R2, по уровню температуры это осуществляет переменный резистор R15 и регулятор смещения температуры – переменный резистор R12. Блоки КТ и РТ созданы на основе триггеров Шмитта. В их эмиттерные цепи включены диоды VD3 и VD7 для уменьшения зоны нечувствительности триггеров (гистерезиса).
Выходное реле К1, которое управляет мощным контактором по включению обогревателя РПУ-2, имеет напряжение срабатывания 24 В. Есть также возможность для использования и герконового реле серии РПГ, имеющего такое же напряжение. В случае относительного небольшого показателя коммутируемой мощности (несколько десятков ватт), допускается применение реле РЭС-32 (паспорт РФ4.500.131 или РФ4.500.163).
Трансформатор питания создан с использованием магнитопровода ШЛ20х16. Первичная обмотка имеет 3300 витков провода ПЭВ-2 – 0,1, вторая обмотка – 350 витков провода ПЭВ -2 – 0,47, третья обмотка – 100 витков провода ПЭВ-2 – 0,21. Переключатели S1 и S2 – П2К, имеющий фиксацию в нажатом положении.
Если регулировка температуры в теплице проводится правильно, средняя температура обязана составлять от +16 до +25 градусов Цельсия, а в ночное время суток должна падать не более чем на 5-8 градусов. Температура ниже нормы начнет замедлять скорость роста растений, а слишком высокая температура тоже не очень благоприятна: она стимулирует рост зеленой массы, что станет причиной ущерба урожайности растений и качества плодов в теплице. Вроде бы все просто, жаркая погода в теплице должна помочь и помидорам, и пальмам в росте и урожайности. Но не тут-то было. Всего лишь пару лишних градусов выше нормы, и большое количество растений начинает чахнуть. В чем причина?
Дело в том, что у каждого вида растений есть своя «любимая» температура, и не только воздуха, а и грунта в том числе. Потому и случается так, что при определенном регулировании температуры в теплице один овощ демонстрирует изобилие в своем урожае, а второй в то же время почти не дает плодов. По этой причине необходимо создавать особенные условия для каждой отдельной группы саженцев. Вот типичная схема контроля за температурой:
Схема расположения датчиков температуры в теплице.
Температура воздуха и грунта в теплице задает темп освоения растениями необходимых им питательных веществ. Чем более развита корневая система у растений, тем более правильно поставлена организация температурного режима в теплице. Если температура составляет меньше 10 градусов тепла, процесс усвоения питательных веществ начинает замедляться. По этой причине температура грунта обязана быть от 13 до 25 градусов, в зависимости от растения, которое посажено в этот грунт. Для хорошего развития корневой системы температура воздуха обязана быть одинаковой и ночью, и днем.
В зависимости от того, какой вид овощей выращивается, дневная оптимальная температура в теплице – 16-25 градусов, а ночью на 4-8 градусов меньше. Скорость роста растений является прямо пропорциональной температуре, поэтому, если увеличить температуру на 10 градусов, увеличится и скорость роста. Но и чрезмерно повышать температуру не стоит (за 40 градусов), поскольку это вызовет гибель зелени.
Самая оптимальная температура для почвы – 14-25 градусов. Снижение этой температуры до 10 градусов спровоцирует фосфорное голодание растений. Также и чрезмерное повышение до 25-28 градусов может привести к затруднению процесса всасывания влаги корнями, по этой причине есть угроза увядания растений даже во влажной почве.
Регулятор, не требующий электричества
В наш автоматизированный век большинство садоводов хочет получать 80% результата при 20% усилий. Это подразумевает сведение до минимума ухода за теплицей. Автоматический регулятор температурного режима в теплице – одно из средств для этого.
Этот регулятор имеет достаточно простой принцип действия. Его составляющие – секторный корпус, смотровая крышка, поворотный клапан, толкающее звено. Как только температура в теплице становится выше 25 градусов тепла, в расширительном бачке воздух нагревается и увеличивается в объеме. Избыток этого теплого воздуха заполняет футбольную камеру, в которой поворачивается клапан, и толкающее звено начинает открывать створку фрамуги. Если же температура воздуха в теплице станет ниже 25 градусов, он охладится и в баке, а потому уменьшится объем и резиновой футбольной камеры. И под действием собственного веса створка фрамуги просто закроется.
Схема гидравлического проветривания теплицы.
Этот регулятор температуры не требует ухода и сравнительно долговечен.
Кроме автоматической регулировки температуры в теплице, существует много дополнительных способов сделать это.
Бывает, что при стечении обстоятельств, температура внутри теплицы может стать на 3-4 градуса ниже, чем снаружи. Хоть это и может показаться довольно странным, но такое зачастую происходит после сильных дождей и наплыва теплых воздушных масс. Практически невозможно предохраниться от таких небезопасных температурных перепадов, и в подобных ситуациях стоит действовать оперативно, не надеясь на автоматику.